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Goal and Challenges

e Goal: find x, = argmin,cy f(x), where f is an expensive black-box function




Goal and Challenges

e Goal: find x, = argmin ¢y f(x), where f is an expensive black-box function.
» No analytical form or gradient
» Evaluations may be noisy
» Grey-Box Setting is sometimes more realistic and useful in practice



Goal and Challenges

e Goal: find x, = argmin .y f(x), where f is an expensive black-box function.
» Expensive is a relative notion
» Real meaning is that we target Sample Efficiency or in other words, we are in limited budget
scenario



Bayesian Optimization

Keys Ildeas:
@ Sequential Optimization
@ Surrogate Model: Learn a probabilistic model M of f , which is cheap to evaluate

@ Acquisition Function: Query f by balancing exploitation against exploration



Bayesian Optimization

Acquisition function:

e El(x) = E[max(0, f(xmin) — f(x))] (Simple, efficient, closed form results)

@ But also many others (Improvement-Based, Entropy-Based or Portfolio-Based...)
Surrogate Model:

@ Gaussian Process (Simple, closed form results)

@ But also many others (Random Forest, Bayesian Neural Networks...)



Motivation

@ The Cost Assumption: The cost of evaluation f is huge yet homogeneous.
o Why? :

» Marginal contribution

> lteration framework

» BO has a greedy way of working



Motivation

@ The Cost Assumption: The cost of evaluation f is huge yet homogeneous.

o Limits 1: In practice, this is often not true, and by several orders of magnitude
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Motivation

@ The Cost Assumption: The cost of evaluation f is huge yet homogeneous.

@ Limits 2: No control on cost for user aside from the opaque notion of iteration.



Existing Solutions

e Maximum gain per cost: Elpu(x) = ’:;I(()S) (Current de-facto standard)




Existing Solutions

e Maximum gain per cost: Elpu(x) = i’((;)) (Current de-facto standard)
e Early and cheap, late and expensive:

El — cool(x) = 5(1)82 , where « is the percentage of remaining budget (Latest Paper on
the topic)




One intuition, two problems

e Optimal Time Allocation Problem: Allocate a maximum time budget and try to
maximize accuracy with no more constraints on maximum number of iteration.

o Bi-Optimization Problem: Allocate a maximum iteration budget and look for the
best trade-off gain in time vs loss in accuracy at the end of iteration count.



A Pareto Front intuition - Introduction

How to better understand cost impact when considered with EI?
@ Each x € X leads to a given cost and El value, at time step t

@ Some of these values are Pareto-optimal.



A Pareto Front intuition
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A Pareto Front intuition
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A Pareto Front intuition
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A Pareto Front intuition - Quick summary of results

@ Strong and general functional form
@ Quite unpredictable evolution

o Lack of optimality persistence



A Pareto Front parametric study

o a—El(x)=EX 4ecrt

C(X)a 9

@ 161 production type datasets, XGboost for Regression and Classification Tasks

@ Low-Variance Cost-Model



A Pareto Front parametric study - Bi-optimization
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A Pareto Front parametric study - Optimal Time Allocation

Alpha Optimal Time Allocation
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A Contextual Approach

o ldea: Identify best Alpha in function of current present context.



Towards Pareto-efficient solutions

@ Goal: Dynamic Alpha Allocation

o Information to leverage:

Past: Performances of Alpha-Acquistion Functions in previous iterations
Present: State of the Pareto Front and other type of information (budget)
Future: Lookahead, going further than simple greedy allocation (sampling)
Offline: Performance on other optimization tasks
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A Contextual Approach

o lIdea: Identify best Alpha in function of current present context.
o Implementation:

cost(x) if EI(x) > (1 — X) * maxyex(El(x))

Contextual — El(x) = { +o0 sinon

, A€ 0,1]
(1)



A Contextual Approach - Results

Bi-Optimization: The Contextual approach
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Cost Modeling - Goals

Goals:
@ Online: Better online cost-modeling
o Offline: Forward-simulate wall-clock time

o Offline: Budget Forecasting Problem



Online Cost Modeling - Models

@ GP: Cost c(x) is modeled with a warped GP that fits the log cost (x). It is then
predicted by c(x) = exp(y(x))

e Low-Variance Models (Grey Box setting): A linear model with low number of features
is trained is trained instead of the GP



Conclusion

@ Need for clear benchmark and customer use cases
@ Context is useful in BO but it's a big challenge to isolate it effect.

@ Lot can be done with cost modeling



Thank you!
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