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Bayesian optimization Pareto Efficient Expected Improvement

» Bayesian optimization (BO) is a model-based approach to solve the global optimization problem:

min  f(X).
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» Assumptions: no closed-form expression, no gradient information, and expensive to evaluate.

» BO builds a surrogate model for f, typically a Gaussian process (GP), and loops for a preset number of iterations. Each

Bi-Optimization: The Contextual approach

» Step 1: Parametric generalization

iteration, it selects a new evaluation point based on an acquisition criterion such as expected improvement (El). g El _ El(x) R+
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> Bi-Optimization Problem: Find an optimal trade-off between the accuracy and cost for given iteration budget. - — Not Easy! Poor performance
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cost model on BO performance.




