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Bayesian optimization

I Bayesian optimization (BO) is a model-based approach to solve the global optimization problem:

min
x∈Ω⊂Rd

f(x).

I Assumptions: no closed-form expression, no gradient information, and expensive to evaluate.
I BO builds a surrogate model for f , typically a Gaussian process (GP), and loops for a preset number of iterations. Each

iteration, it selects a new evaluation point based on an acquisition criterion such as expected improvement (EI).

The cost assumption: Justification, Limits and Heuristics

Figure: Density estimation of runtime distribution of 5000 randomly
selected points for XGBoost. We witness several orders of
magnitude of difference between evaluations.

I The Cost Assumption: The cost of evaluation f is
huge yet homogeneous.

I Problem: This is not true in reality. Moreover, not
control on cost for user.

I Current heuristics:

EIpu(x) ,
EI(x)

c(x)

EIkcool(x) ,
EI(x)

c(x)τk

↪→ Yet, limited experimental performance and no
theoretical justifications.

A Pareto-Front intuition

Figure: Representative examples of the EI-cost Pareto front at two different BO iterations. Yhe blue dots represent the Pareto front (EI,Cost) at the
current BO iteration t , while there dashed curve refers to the Pareto front at iteration t−1.

I Towards a better understanding of previous heuristics.

I Findings to leverage: Consistent and general functional form (and unpredictable evolution, lack of optimality
persistence)

I In theory and practice, two different settings:
. Bi-Optimization Problem: Find an optimal trade-off between the accuracy and cost for given iteration budget.
. Optimal Time Allocation Problem: Maximize accuracy under a cost budget constraint (no more restrictions on

iterations number).

Pareto Efficient Expected Improvement

Figure: Bi-Optimization: (Blue curve) The accuracy-cost trade-off
for EIα at a set of α levels (i.e. you can trade-off x% accuracy for
y% time gain)(Colored Points:) The accuracy-cost trade off for CEIλ
at a set of λ levels.

I Step 1: Parametric generalization

EIα(x) =
EI(x)

c(x)α
, α ∈R+.

↪→We can control and predict the cost-accuracy
trade-off.

I Step 2: Dynamic allocation - Pareto Robustness

CEIλ (x) :=

{
−c(x) if EI(x)≥ (1−λ )maxz∈(EI(z)),
−∞ otherwise.

↪→ Same Performance with more Robustness

Figure: Comparison of EIα with EI and EIpu in the optimal time allocation problem. Each plot corresponds to a different multiple of minimal budget
(e.g. 2000% is 20 times this budget). Results are ranked at each iteration based on the minimum found up to that point by each method, a lower rank
corresponding to a better minimization performance.

Cost Modeling: Online and Offline approaches

Figure: (Left): Performance of different cost models in grey-box setting. (Right): Impact of
cost model on BO performance.

I Online cost modelling: Can we
have better online cost modeling
in grey box setting?
↪→ Yes, with low-variance
models, high importance of
low-data regime.

I Offline cost modelling: Can we
transfer offline cost models in
grey box setting?
↪→ Not Easy! Poor performance
compared to simple online
models.


