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Abstract

Bayesian optimization (BO) is a popular method to optimize expensive black-
box functions. It efficiently tunes machine learning algorithms under the implicit
assumption that hyperparameter evaluations cost approximately the same. In
reality, the cost of evaluating different hyperparameters, be it in terms of time,
dollars or energy, can span several orders of magnitude of difference. While
a number of heuristics have been proposed to make BO cost-aware, none of
these have been proven to work robustly. In this work, we reformulate cost-
aware BO in terms of Pareto efficiency and introduce the cost Pareto Front, a
mathematical object allowing us to highlight the shortcomings of commonly used
acquisition functions. Based on this, we propose a novel Pareto-efficient adaptation
of the expected improvement. On 144 real-world black-box function optimization
problems we show that our Pareto-efficient acquisition functions significantly
outperform previous solutions, bringing up to 50% speed-ups while providing
finer control over the cost-accuracy trade-off. We also revisit the common choice
of Gaussian process cost models, showing that simple, low-variance cost models
predict training times effectively.

1 Introduction

Bayesian optimization (BO) is a well-established methodology to find the global minimizer of an
expensive black-box function f : X → R, where X ⊂ Rd [30]. One of the major use cases is the
automatic tuning of machine learning algorithms [14, 5, 32, 33, 30]. BO has been successful in several
other applications, including user interfaces [7], robotics [6], environmental monitoring [25], sensor
networks [15], adaptive Monte Carlo [36], experimental design [3], and reinforcement learning [4, 34].
In all these settings, we typically do not have access to an analytic form of f and only have a finite
evaluation budget to sequentially query f at points x ∈ X .

A limitation of standard BO is the implicit assumption that evaluating different hyperparameter
configurations incurs approximately the same cost, which is rarely the case in practice. For instance,
evaluating hyperparameter settings corresponding to larger neural network architectures requires
higher training cost. As cost can differ in orders of magnitudes [23], some works have proposed
heuristics to make BO cost-aware [32, 1, 23]. Unfortunately, cost-aware BO has not been studied
systematically, and commonly used acquisition functions have not been proved to work robustly.

In this paper, we revisit cost-aware BO through the lens of Pareto optimality. This allows us to
highlight the shortcomings of commonly-used heuristics and directly control the improvement-cost
trade-off at each BO iteration. Based on this, we introduce a novel, robust cost-aware acquisition
function. In extensive experiments drawn from 144 real-world hyperparameter optimization (HPO)
problems, we show that our solution outperforms both classical and recent cost-aware methods. We
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also show that simple linear models predict training times more effectively than GPs, the default
choice in the literature.

2 Background and Related Work

Consider the problem of finding x? = argminx∈X f(x), where x is a hyperparameter configuration,
X the search space, and f(x) a black-box function (e.g., the map from hyperparameter configurations
to validation error). As the functional form of f(x) is unknown, BO replaces it with a probabilistic
surrogate model, with a popular choice being the Gaussian process (GP) [29]. The next point
to evaluate is obtained by repeatedly optimizing an acquisition function until some budget (e.g.,
iterations, dollars or time) is exhausted [20].

Most acquisition functions used in BO implicitly assume that all hyperparameter evaluations cost
approximately the same. For example, the Expected Improvement (EI), one of the most popular
acquisition function for BO, is defined by EI(x) = E[max(0, fmin− f(x|D)] for each hyperparam-
eter configuration x ∈ X [26]. To make the EI cost-aware, common practice is to normalize it by
the cost c(x) of evaluating x [32, 27, 33]. This replaces EI with EI per unit cost (EIpu) defined as
follows:

EIpu(x) =
EI(x)

c(x)
.

The modified form of EI is designed to balance the improvement with the evaluation cost [32]. To
compute EIpu, it is necessary to learn the cost function c(x), which is typically modeled with a
warped GP [31] fitted on the log cost γ(x) [32]. However, in [23] it was shown that EIpu does not
consistently improve over EI, especially when the best hyperparameters are in the most expensive
regions of the hyperparameter space. To mitigate this, that work introduced a cost-cooling approach.
If τk of the total budget τ has been used at the kth BO iteration (at k = 0, τk = τinit), EI-cool
is defined as EIkcool(x) = EI(x)

c(x)α , α = (τ − τk)/(τ − τinit). As the parameter α decays from
one to zero, EI-cool transitions from EIpu to EI. As a result, cheap evaluations are obtained before
expensive ones. While more robust than EIpu, experimental results in [23] still only showed modest
improvements over conventional EI. Moreover, this method requires the budget τ to be defined a
priori, with huge yet hard to study impact on performance. Other acquisition functions, such as
entropy-based ones, are not designed to account for evaluation cost either [16, 17, 35].

Alternative approaches to cost-aware BO operate in a grey-box setting [13, 21, 27, 37]. Among these,
multi-fidelity methods, such as Hyperband [24] and its BO extensions [12, 22], assume the presence
of a fidelity parameter s. An example in the context of tuning neural networks is the epoch count. This
parameter acts as a noisy proxy for high-fidelity evaluations in that increasing s decreases noise at
the expense of runtime. Except when s is chosen to be the dataset subsampling factor, these methods
are not applicable in a black-box setting as they require an algorithm-specific fidelity parameter s.
In addition, by relying on parallel computing, multi-fidelity techniques target time-efficiency rather
than compute time, cost, or energy efficiency. Existing sample-efficient, BO-based extensions of
Hyperband are still built on cost-unaware acquisition functions such as the EI, and could be combined
with the black-box, cost-aware approaches we propose in this work. Another grey-box, cost-aware
technique was recently proposed in the context of multi-objective BO [1]. Yet, this requires as an
input a partial order of the search space dimensions based on a priori cost preferences, a rather
restrictive condition in practice.

3 Pareto Efficient Bayesian Optimization

Without loss of generality, assume that cost is the time required to evaluate the black-box function f
at a given BO iteration. This is easily mapped to energetic or financial cost [19]. Assume BO is run
for N iterations and let BOA(XN ) denote the set of all hyperparameter configurations queried by
BO using an acquisition function from class A.

We aim to address the following problem: Given some budget, how do we develop a BO algorithm
that uses it optimally? Based on how the budget is defined, this maps to either one of the two
following sub-problems:

• Bi-Optimization Problem. The budget is the maximum number of BO iterations N . The
goal is to find an optimal trade-off between the accuracy of the returned solution and the
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Figure 1: Representative examples of the EI-cost Pareto front at two different BO iterations. XGBoost
is tuned on the a1a and splice datasets from the UCI machine learning repository [11]. The squares
correspond to the maximizer of EIα for different values of α; recall that α = 0 corresponds to EI
and α = 1 to EIpu. The blue dots represent the Pareto front at the current BO iteration t, while the
red dashed curve refers to the Pareto front at iteration t− 1.

.

time required by BO. Formally, we want to determine the following Pareto Front:

PF({(y?, c?) | xi ∈ BOA(XN ), y? = min
1≤i≤N

f(xi), c
? =

∑N
i=1c(xi)}).

• Optimal Time Allocation Problem. The budget is the maximum wall-clock time τ . The
goal is to maximize accuracy within the time budget τ , with no constraints on the number
of iterations. In other words, this setting is a limited-resource allocation or constrained
optimization problem. Formally, we are interested in

inf
N∈N∗

{y? | xi ∈ BOA(XN ), y? = min
1≤i≤N

f(xi),
∑N
i=1 c(xi) ≤ τ}.

Next, we introduce a family Aλ of Pareto-efficient acquisition functions to address these problems.

3.1 Pareto Efficient Expected Improvement

Let g : X → R2 be a function over X mapping hyperparameters to the evaluation cost and negative
EI. Given two points x1,x2 ∈ X , x1 � x2 if x2 is weakly dominated by x1, namely if and only
if g(x1)i ≤ g(x2)i for i ∈ {1, 2}. We write x1 � x2 if x2 is dominated by x1, namely if and
only if x1 � x2 and ∃i ∈ {1, 2} such that g(x1)i < g(x2)i. The Pareto front of g is defined by
PF = {x ∈ X | 6 ∃x′ ∈ X : x′ � x}, that is, the set of all non-dominated points in terms of EI and
cost. We argue that the next point to be evaluated at a given iteration should be in the Pareto front;
otherwise, it would be possible to find a better point either in terms of cost or EI. To this end, we
define the family Aα of acquisition functions EIα, where

EIα(x) =
EI(x)

c(x)α
, α ∈ R+. (1)

In the context of multi-objective optimization, EIα is a parametric scalarization technique [9].
The parameter α controls the trade-off between cost and EI and allows us to navigate the Pareto
front, as illustrated by Figure 1. On the one hand, EI (i.e., α = 0) picks the point with highest
EI, which is necessarily in the Pareto front. However, the best point usually involves spending an
extra supplementary budget for very little gain of EI due to a performance plateau. The marginal
improvement from optimizing the EI is usually not worth the additional cost (see Appendix B for
more details). On the other hand, EIpu (i.e., α = 1) maximizes the expected improvement per unit of
cost. By construction, the selected point will again belong to the Pareto front: it will be the point in
the Pareto front with the highest slope. Yet, this may lead to a sub-optimal solution in terms of the
accuracy that could have been achieved.

In order to achieve a better and more robust trade-off, we propose to leverage the Pareto front at
each iteration to select a good α. To this end, we introduce the family Aλ of contextual EI (CEI)
acquisition functions, a cost-aware adaptation of the EI which takes into account the Pareto front at
each iteration. For λ ∈ [0, 1], CEI is defined as follows:
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Figure 2: Left: Comparison of models to predict the XGBoost training time as a function of its
hyperparameters. The y-axis is the RMSE averaged over 144 HPO problems and 10 seeds, while
the x-axis is the number of available hyperparameter evaluations to fit the cost model. We consider
three simple linear models, using 1, 2 and 3 of the most significant hyperparameters, respectively.
Limited-features GP is a GP trained using only 3 features. For all models, the features are log-scaled,
and we predict the log run-time. Right: Same experiment with a focus on the low-evaluation regime.

CEIλ(x) :=

{
−c(x) if EI(x) ≥ (1− λ)maxz∈X (EI(z)),
−∞ otherwise. (2)

Intuitively, CEI minimizes the cost c among the points with a sufficiently high expected improvement.
CEI only considers the 100 × λ% points with the highest accuracy and, among these, selects the
one with the lowest cost i.e. optimizes the cost constrained by EI. It can be shown with continuity
arguments that the solution obtained belongs to the Pareto Front. Similar to the α parameter in EIα,
λ controls the trade-off between cost and improvement. However, as we will show shortly, CEI is
more robust if the shape of the Pareto Front is unconventional. It also reveals the core importance of
cost models, as detailed in the next section.

3.2 Cost Modeling

The problem of predicting the cost of a computer program is well-studied by prior work. Applications
include predicting system loads, dispatching computational resources, or determining computational
feasibility [18, 19, 10, 28, 23]. In the black-box setting, the typical procedure is to model the cost
c(x) with a warped GP [31] that fits the log cost γ(x) [32]. However, GPs extrapolate poorly, leading
to high-variance cost predictions far away from data [23].

Consider the specific problem of modeling the evaluation time of XGBoost [8] as a function of its
hyperparameters. We compare different algorithms: a classical GP, linear (low-variance) models
with different number of features (LV) [23], and a GP trained on the residuals of a low-variance
model (GP-LV). These regression models need to be data-efficient to reach good accuracy quickly in
the initial BO iterations. Figure 2 shows that cost can be more efficiently captured by simple linear
models, which we will use in the remainder of the paper. In the context of BO, the cost model is
typically learned online as the optimization progresses. An alternative is to learn it using transfer
learning from related tasks, as we detail in Appendix B.

4 Experiments

We considered 144 real-world black-box optimization problems, consisting of tuning XGBoost on 18
datasets, each processed with 8 different feature-engineering pipelines. Unless otherwise indicated,
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each result is averaged across the 144 problems and 10 seeds, with 95% confidence intervals obtained
via bootstrapping. The problems span multi-class, binary classification and regression tasks (more
details in Appendix A). We ran all experiments on AWS with m4.xlarge machines.

Figure 3: The accuracy-cost trade off for EIα at
a set of α levels. Percentages are calculated w.r.t
the performance of EI on the same blackbox prob-
lem and then averaged across seeds and datasets.
Circles and crosses correspond respectively to the
mean and median value all the blackboxes.

Bi-optimization and Optimal Time Alloca-
tion We first study the problem of optimiz-
ing cost and performance through EIα with a
budget of 100 iterations. Figure 3 shows the
impact of varying α, which controls the trade-
off between cost and accuracy. The resulting
front appears smooth and the relationship be-
tween performance gain and cost can be ob-
served. Particularly in terms of median, the
Pareto front is sharp with large time gains traded
for limited accuracy loss. Hence, it is possi-
ble to choose a value for α based on one’s cost
aversion. In particular, for low α values, the
mean performance loss is limited compared to
the cost gains: 50% of wall-clock time is gained
at 1% accuracy loss (for α = 0.1), and 20% of
wall-clock time is gained with no accuracy loss
(for α = 0.01). In contrast, standard practice of
setting α = 1 (EIpu) leads to severe accuracy
degradation, while α = 0 (EI) is unnecessarily
costly.

Next, we consider the problem of optimizing per-
formance under a time constraint. As time scales
are distinct across datasets, we consider the min-
imum time required by one of the α-acquisitions
function to reach 100 iterations. Figure 4 shows
the results. Perhaps surprisingly, EIpu performs
poorly even in a low-budget scenario. Generally,
we observe a bell-shaped trend: α values close to 0 and 1 will produce less interesting results than
intermediate values, with an optimum around 0.2. As we progressively increase the budget, EI
progressively catches up with the different EIα; for larger budgets we are less sensitive to the actual
cost and an excessive cost penalty degrades the performance as expected.

The previous results and theoretical observations suggest allocating α dynamically rather than fixing
it to a fixed value. We now demonstrate the benefits of adapting to the improvement-cost Pareto front

Figure 4: Comparison of EIα with EI and EIpu in the optimal time allocation problem. Each plot
corresponds to a different multiple of minimal budget (e.g. 2000% is 20 times this budget). This
notion is necessary to aggregate meaningfully results across datasets. Results are ranked at each
iteration based on the minimum found up to that point by each method, a lower rank corresponding
to a better minimization performance. This rank is then averaged across seeds and datasets.
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Figure 5: Left: Bi-Optimization results for different contextual strategies. The percentage refers
to the value of the trade-off ratio. The two blue curves correspond to fixed α strategies (mean and
median). Right: Average value of α picked by CEI against the number of BO iterations.

Figure 6: Comparison of CEI to the EI and EIpu acquisition functions in the optimal time allocation
problem. The CEI acquisition functions consistently outperform the widely used EI and EIpu.

via CEI. Figure 5 (left) shows that CEI is an effective solution to the bi-optimization problem, with
λ directly controlling the accuracy-cost trade-off. The trade-offs achieved by CEI are consistently on
par or better compared to EIα. Indeed, for a fixed λ, CEI adapts to the Pareto front at each iteration,
unlike EIα. Figure 5 (right) reports the average α value that would have led to the configuration
selected by CEI, showing that CEI corresponds to dynamically allocating α at each iteration. Finally,
we evaluate CEI in the context of the optimal time allocation problem, where the goal is to optimize
performance within a fixed time budget. Figure 6 shows that, with the exception of extreme cost
penalization, CEI consistently outperforms the popular EI and EIpu acquisitions. In particular, it is
much more robust than EIpu and is able to outperform EI, even in the large budget regime.

5 Conclusion

We introduced a novel formulation of cost-aware BO based on the Pareto front of cost and expected
improvement. This allowed us to highlight the shortcomings of commonly used cost penalization
heuristics and develop a new family of cost-aware acquisition functions based on EI. In extensive
experiments we showed that our approach outperforms both the popular EI and its cost-aware
extension. Future work could leverage the Pareto front dynamics during BO to develop more
adaptive schedules for the cost-sensitivity parameter α. Our method could also be applied to different
acquisition functions and optimization problems.
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A Experiment settings

Our code is built on GPyOpt [2]. Kernel hyperparameters for the GP models are obtained via
maximum marginal likelihood estimation [29]. We considered the problem of tuning the popular
XGBoost algorithm (XGB) [8], as implemented in scikit-learn. This consists of a 7-dimensional
hyperparameter space: number of boosting rounds in {1, 2, . . . , 256} (log scaled), learning rate in
[0.01, 1.0] (log scaled), minimum loss reduction to partition leaf node gamma in [0.0, 0.1], L1 weight
regularization alpha in [10−3, 103] (log scaled), L2 weight regularization lambda in [10−3, 103]
(log scaled), subsampling rate in [0.01, 1.0], maximum tree depth in {1, 2, . . . , 16}.
We ran all experiments on 144 benchmarks, consisting of the problem of tuning XGBoost on 18
datasets, each processed with 8 different feature-engineering pipelines. These pipelines involve
basic operations, such as categorical variable detection, one-hot encoding, as well as dimensionality
reduction operations, such as PCA.3 Results are averaged across 10 repetitions, with 95% confidence
intervals obtained via bootstrapping. The problems span multi-class, binary classification and
regression tasks. We used the following publicly available datasets:

• UCI datasets: abalone, statloglandsatsatellite, turkiyestudentevaluation,
insurancecompanybenchmarkcoil2000, parkinsonstelemonitoring,
penbasedrecognitionofhandwrittendigits.

• OpenML datasets: 3892, 405, 125922, 14953, 3007, 287, 503, 189, 558,
1489.

• Kaggle datasets: team-ai-spam-text-message-classification,
olgabelitskaya-classification-of-handwritten-letters.

B Additional Experiments

The purpose of this appendix is two-fold. First, we give insights into the dynamics of cost and EI
during BO. More precisely, we focus on its evolution and persistence. Second, we present additional
results on cost learning and its impact on BO.

Evolution and Persistence of the Pareto Front We investigate the evolution of the Pareto front at
each BO iteration. The difference in expected improvement across two subsequent BO iterations can
be split as follows.

EIt+1(x)− EIt(x) = Et+1[max(0, ymin(t+ 1)− f(x|D))]− Et[max(0, ymin(t)− f(x|D))]
' ymin(t+ 1)− ymin(t)︸ ︷︷ ︸

Constant & Global

+(Et+1 − Et)[ymin(t)− f(x|D)]︸ ︷︷ ︸
Non-linear & Local

,

where Et stands for the expected value at iteration t, taken with respect to the posterior mean and
variance functions at t, and ymin(t) is the current objective function minimum. Yet, the magnitude
and relative impact of these two components is experimentally unknown.

The Pareto front can drastically evolve across iterations. Figure 7 shows this by comparing the Pareto
front across two successive iterations, represented by the red and blue curves, respectively. This is
mainly due to the non-linear and local component above. It is therefore complex to predict the state
of the front at the next iteration. We observe the Pareto front tends to become stationary only for
some HPO problems and after a large number of iterations.

Then, we studied the persistence of the Pareto front. Specifically, we show that the optimal hyperpa-
rameter configurations rarely remain optimal across several evaluations. Figure 7 illustrates this. This
is expected due to the myopic nature of EI. Methods such as EIpu, which attempt to maximize a gain
per cost, may suffer from this inconsistency.

Cost Transfer Learning In Section 3.2, we presented results on how to build a better cost model
during BO. To reduce the overhead of updating two models online, an alternative is learning the cost

3The complete set of feature processing steps and their implementation is available at https://github.
com/aws/sagemaker-scikit-learn-extension.
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Figure 7: Representative examples of Pareto-Front visualization at different time-step t, focusing
on its persistence across iterations. Each green cross corresponds to the new value of a point that
belonged to the Pareto front at step t− 1. The update is due to the fact that a new surrogate and cost
model are used. Aside from this, legend and experiment settings are similar to Figure 1. The Pareto
front remains stable only in the last example. XGBoost is tuned on the a1a, a3a and splice datasets
from the UCI machine learning repository [11] and we use the EI acquisition function. .

model offline in a transfer learning fashion. Although a similar idea was explored in [28], learning
a cost model across tasks has not been done in the context of BO. In terms of implementation, it is
more practical to work with a fixed cost model, which does not evolve during BO. By learning a
cost model offline, BO can immediately leverage an efficient cost-aware policy, without wasting any
budget in an initial exploration phase.

To demonstrate this, we compare offline and online models in Figure 8. Although the cost model
is easily captured by simple linear models, it does not generalize well across HPO problems. The
models learned online achieve the same performance as the transfer learning models with only about
ten hyperparameter evaluations. However, algorithms such as XGBoost or simple linear models can
still model cost reasonably well despite not having access to any evaluations about the problem at
hand.

Impact of Cost Learning on BO Performance We then evaluated the impact of the cost model
on the overall BO performance. To this end, we focused on the bi-optimization problem and studied
the cost-accuracy trade-off when plugging different cost models into BO (similar to [23]). Figure 9
shows that the cost model can have a strong impact on the performance-time gain. Transferring a cost
model from offline datasets, which leads to a worse cost model, will also lead to a less interesting
Pareto Front than the one obtained with a low-variance model learned online. More precisely, the
time savings will be comparable but associated to higher accuracy losses. We also observe that the
LV model performs at least as well as the GP model, at much lower computational complexity. In
particular, for large values of α, the LV model leads to a better Pareto Front.
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Figure 8: Comparison of different transfer learning and online cost models to predict the runtime
of XGBoost as a function of its hyperparameters, averaged over 144 HPO problems. Results are
split into regression and classification tasks. Blue boxes correspond to the classical GP and the
orange ones to low-variance models using 3 features, with different training set sizes indicated in
brackets. In green, different transfer learning regression algorithms are compared. We compare
XGBoost, a low-variance linear model using data from related HPO problems (Task-Aware Linear),
a LV model using all available data (Naive Linear), a multi-layer perceptron (MLP), a K-nearest
neighbors regressor (KNN) and a Decision tree. Only core meta-features of datasets are used (number
of classes, columns and lines) as supplementary features of the cost model. Yet, further experiments
have shown that the impact of adding more complex meta-features is minor.

.

Figure 9: Comparison of different cost models when plugged into BO using EIα, for different values
of α (Bi-optimization problem). Linear refers to the LV model with 3 features, and Transfer to the
offline LV model, with the same 3 features.
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