
Semi-Supervised Learning for Bilingual Lexicon Induction
Gauthier Guinet
Ecole Polytechnique

Théophile de Bonnaventure
Ecole Polytechnique

Laurent Massoulié
Inria

ABSTRACT
We consider the problem of aligning two sets of continuous word
representations, corresponding to languages, to a common space
in order to infer a bilingual lexicon. It was recently shown that it
is possible to infer such lexicon, without using any parallel data,
by aligning word embeddings trained on monolingual data. Such
line of work is called unsupervised bilingual induction. By wonder-
ing whether it was possible to gain experience in the progressive
learning of several languages, we asked ourselves to what extent
we could integrate the knowledge of a given set of languages when
learning a new one, without having parallel data for the latter.
In other words, while keeping the core problem of unsupervised
learning in the latest step, we allowed the access to other corpora
of idioms, hence the name semi-supervised. This led us to pro-
pose a novel formulation, considering the lexicon induction as a
ranking problem for which we used recent tools of this machine
learning field. Our experiments on standard benchmarks, infer-
ring dictionary from English to more than 20 languages, show that
our approach consistently outperforms existing state of the art
benchmark. In addition, we deduce from this new scenario sev-
eral relevant conclusions allowing a better understanding of the
alignment phenomenon.

KEYWORDS
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1 INTRODUCTION
Word vectors are conceived to synthesize and quantify semantic
nuances, using a few hundred coordinates. These are generally used
in downstream tasks to improve generalization when the amount
of data is scarce. The widespread use and successes of these "word
embeddings" in monolingual tasks has inspired further research on
the induction of multilingual word embeddings for two or more
languages in the same vector space.

The starting point was the discovery [26] that word embedding
spaces have similar structures across languages, even when con-
sidering distant language pairs like English and Vietnamese. More
precisely, two sets of pre-trained vectors in different languages can
be aligned to some extent: good word translations can be produced
through a simple linear mapping between the two sets of embed-
dings. As an example, learning a direct mapping between Italian
and Portuguese leads to a word translation accuracy of 78.1% with
a nearest neighbor (NN) criterion.

Embeddings of translations and words with similar meaning
are close (geometrically) in the shared cross-lingual vector space.
This property makes them very effective for cross-lingual Natural
Language Processing (NLP) tasks. The simplest way to evaluate the
result is the Bilingual Lexicon Induction (BLI) criterion, which de-
signs the percentage of the dictionary that can be correctly induced.

Thus, BLI is often the first step towards several downstream tasks
such as Part-Of-Speech (POS) tagging, parsing, document classi-
fication, language genealogy analysis or (unsupervised) machine
translation.

Frequently, these common representations are learned through
a two-step process, whether in a bilingual or multilingual setting.
First, monolingual word representations are learned over large por-
tions of text; these pre-formed representations are actually avail-
able for several languages and are widely used, such as the Fasttext
Wikipedia vectors used in this work. Second, a correspondence be-
tween languages is learned in three ways: in a supervised manner if
parallel dictionaries or data are available to be used for supervisory
purposes, with minimal supervision, for example by using only
identical strings, or in a completely unsupervised manner.

It is common practice in the literature on the subject to separate
these two steps and not to address them simultaneously in a paper.
Indeed, measuring the efficiency of the algorithm would lose its
meaning if the corpus of vectors is not identical at the beginning.
We will therefore use open-source data from Facebook containing
embeddings of several dozen languages computed using Wikipedia
data. The fact that the underlying text corpus is identical also helps
to reinforce the isomorphic character of the point clusters.

Concerning the second point, although three different approaches
exist, they are broadly based on the same ideas: the goal is to identify
a subset of points that are then used as anchors points to achieve
alignment. In the supervised approach, these are the words for
which the translation is available. In the semi-supervised approach,
we will gradually try to enrich the small initial corpus to have
more and more anchor points. The non-supervised approach dif-
fers because there is no parallel corpus or dictionary between the
two languages. The subtlety of the algorithms will be to release a
potential dictionary and then to enrich it progressively.

We will focus in the following work on this third approach. Al-
though it is a less frequent scenario, it is of great interest for several
reasons. First of all, from a theoretical point of view, it provides
a practical answer to a very interesting problem of information
theory: given a set of texts in a totally unknown language, what in-
formation can we retrieve? The algorithms we chose to implement
contrast neatly with the classical approach used until now. Finally,
for very distinct languages or languages that are no longer used, it
is true that the common corpus can be very thin.

Many developments have therefore taken place in recent years
in this field of unsupervised bilingual lexicon induction. One of the
recent discoveries, which pushed us to do this project, is the idea
that using information from other languages during the training
process helps improve translating language pairs. We came across
this idea while searching for multi-alignment of languages instead
of bi-alignment.
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We chose to approach the problem in a different way, keeping an
unsupervised alignment basis however. We asked ourselves to what
extent we could integrate the knowledge of a given set of languages
when learning a new one, without having parallel data for the latter.
The scenario of multi-alignment unsupervised assumes that there
is no parallel data for all language pairs. We think it is more realistic
and useful to assume that we do not have this data only for the last
language.

The underlying learning theme led us to formulate the problem
as follows: is it possible to gain experience in the progressive
learning of several languages? In other words, how canwemake
good use of the learning of several acquired languages to learn a new
one? To our knowledge, this problem has never yet been addressed
in the literature on the subject. This new formulation led us to
consider the lexicon induction as a ranking problem for which we
used recent tools of this machine learning field called Learning to
Rank.

In summary, this paper make the following main contributions:

• We present a new approach for the unsupervised bilingual
lexicon induction problem that consistently outperforms
state-of-the-art methods on several language pairs. On a
standard word translation retrieval benchmark, using 200k
vocabularies, our method reaches 95.3% accuracy on English-
Spanish while the best unsupervised approach is at 84.1%.
By doing this, we set a new benchmark in the field.

• We conduced a study on the impact of the idioms used for
the learning and for the prediction step, allowing us to have
a better core understanding of our approach and to forecast
the efficiency for a new idiom.

• Our results further strengthen in a new way the strong hy-
pothesis that word embedding spaces have similar structures
across languages. [26]

We will proceed as follows: Sections 2 and 3 will outline the
state of the art and the different techniques used for unsupervised
learning in this context. In particular, we will explain the Wasser-
stein Procustes approach for bilingual and multi alignment. We
then emphasize the lexicon induction given the alignment. Sec-
tion 4 presents the Learning to Rank key concepts alongside the
TensorFlow framework used in our main algorithm. Section 5 de-
scribes our program, the different subtleties and the key parameters.
Finally, Section 6 presents the experimental results we obtained.

2 UNSUPERVISED BILINGUAL ALIGNEMENT
In this section, we provide a brief overview of unsupervised bilin-
gual alignment methods to learn a mapping between two sets of
embeddings. The majority are divided into two stages: the actual
alignment and lexicon induction, given the alignment. Even if the
lexicon induction is often taken into account when aligning (di-
rectly or indirectly, through the loss function), this distinction is
useful from a theoretical point of view.

Historically, the problem of word vector alignment has been
formulated as as a quadratic problem. This approach, resulting
from the supervised literature then allowed to presume the absence
of lexicon without modifying to much the framework. That is why
we will deal with it first in what follows.

Figure 1: Word embeddings alignment (in dimension 2).

2.1 Orthogonal Procrustes Problem
Procustes is a method that aligns points if given the correspon-
dences between them (supervised scenario). X ∈ R𝑛×𝑑 and Y ∈
R𝑛×𝑑 are the two sets of word embeddings or points and we sup-
pose, as previously said, that we know which point X corresponds
to which point Y. This leads us to solve the following least-square
problem of optimization, looking for the W matrix performing the
alignment [2] :

min
W∈R𝑑×𝑑

∥XW − Y∥22

We have access to a closed form solution with a cubic complexity.
Restraining W to the set of orthogonal matrices O𝑑 , improves the
alignments for two reasons: it limits overfitting by reducing the
size of the minimization space and allows to translate the idea of
keeping distances and angles, resulting from the similarity in the
space structure. The resulting problem is known as Orthogonal
Procrustes and it also admits a closed form solution through a
singular value decomposition (cubic complexity).

Thus, if their correspondences are known, the translation ma-
trix between two sets of points can be inferred without too much
difficulties. The next step leading to unsupervised learning is to
discover these point correspondences using Wasserstein distance.

2.2 Wasserstein Distance
In a similar fashion, finding the correct mapping between two sets
of word can be done by solving the followingminimization problem:

min
P∈P𝑛

∥X − PY∥22

P𝑛 containing all the permutation matrices, the solution of the
minimization, Pt will be an alignmentmatrix giving away the pair of
words. This 1 to 1 mapping can be achieved thanks to the Hungarian
algorithm. It is equivalent to solve the following linear program:

max
P∈P𝑛

tr
(
X⊤PY

)
The combination of the Procustes- Wasserstein minimization

problem is the following:

min
Q∈O𝑑

min
P∈P𝑛

∥XQ − PY∥22
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In order to solve this problem, the approach of [2] was to use
a stochastic optimization algorithm. As solving separately those
2 problems was leading to bad local optima, their choice was to
select a smaller batch of sizeb, and perform their minimization
algorithm on these sub-samples. The batch is playing the role of
anchors points. Combining this with a convex relaxation for an
optimal initialization, it leads to the following algorithm:

Stochastic optimization algorithm

1: for 𝑡 = 1 to 𝑇 do
2: Draw X𝑡 from X and Y𝑡 from Y, of size 𝑏
3: Compute the optimal matching between X𝑡 and Y𝑡 given the
current orthogonal matrix Q𝑡

P𝑡 =P∈P𝑏
tr
(
Y𝑡Q⊤

𝑡 X
⊤
𝑡 P

)
4: Compute the gradient G𝑡 with respect to Q :

G𝑡 = −2X⊤
𝑡 P𝑡Y𝑡

5: Perform a gradient step and project on the set of orthogonal
matrices:

Q𝑡+1 = ΠO𝑑
(Q𝑡 − 𝛼G𝑡 )

For a matrixM ∈ R𝑑×𝑑 , the projection is given by ΠO𝑑
(M) = UV⊤,

with USV⊤ the singular value de- composition of M.
6: end for

2.3 Other unsupervised approaches
Other approaches exist but they are currently less efficient than the
one described above for various reasons: complexity, efficiency....
We will briefly describe the two main ones below.

• Optimal transport: Optimal transport [32] formalizes the
problem of finding a minimum cost mapping between two
word embedding sets, viewed as discrete distributions. More
precisely, they assume the following distributions:

` =

𝑛∑
𝑖=1

p𝑖𝛿x(𝑖 ) , a =

𝑚∑
𝑗=1

q𝑗𝛿y(𝑖 )

and look for a transportation map realizing:

inf
𝑇

{∫
X
𝑐 (x,𝑇 (x))𝑑` (x) |𝑇#` = a

}
where the cost 𝑐 (x,𝑇 (x)) is typically just ∥x− 𝑇 (x)∥ and
𝑇#` = a implies that the source points must exactly map
to the targets. Yet, this transportation not always exist and
a relaxation is used. Thus, the discrete optimal transport
(DOT) problem consists of finding a plan Γ that solves

min
Γ∈Π (p,q)

⟨Γ,C⟩

where C ∈ R𝑛×𝑚 e.g.,𝐶𝑖 𝑗 =
x(𝑖) − y( 𝑗)

 . is the cost matrix
and the total cost induced by Γ is ⟨Γ,𝐶⟩ := ∑

𝑖 𝑗 Γ𝑖 𝑗𝐶𝑖 𝑗 . where
Γ belongs to the polytope

Π(p, q) =
{
Γ ∈ R𝑛×𝑚+ |Γ1𝑛 = p, Γ⊤1𝑛 = q

}

A regularization is usually added, mostly through the form
of an entropy penalization:

min
Γ∈Π (p,q)

⟨Γ,C⟩ − _𝐻 (Γ)

Some works [30] are based on these observations and then
proposes algorithms, effective in our case because they adapt
to the particularities of word embeddings. However, we no-
tice that even if the efficiency is higher, the complexity is
redibitive and does not allow the use of large vocabularies.
Moreover, the research is more and more oriented towards
an improvement of the algorithm described above with op-
timal transport tools rather than towards a different path.
This is why we will not focus in particular on this track.
We should however note the use of Gromov-Wasserstein
distance [31], which allows to calculate in an innovative way
the distance between languages, although they are in dis-
tinct spaces, enabling to compare the metric spaces directly
instead of samples across the spaces.

• Adversarial Training:Another popular alternative approach
derived from the literature on generative adversarial network
[29] is to align point clouds without cross-lingual supervi-
sion by training a discriminator and a generator [5]. The
discriminator aims at maximizing its ability to identify the
origin of an embedding, and the generator of W aims at
preventing the discriminator from doing so by making WX
and Y as similar as possible. They note \𝐷 . the discriminator
parameters and consider the probability 𝑃\𝐷 ( source = 1|𝑧)
that a vector 𝑧 is the mapping of a source embedding (as op-
posed to a target embedding) according to the discriminator.
The discriminator loss can then be written as:

L𝐷 (\𝐷 |𝑊 ) = − 1
𝑛

𝑛∑
𝑖=1

log 𝑃\𝐷 (source = 1|𝑊𝑥𝑖 )

− 1
𝑚

𝑚∑
𝑖=1

log 𝑃\𝐷 (source = 0|𝑦𝑖 )

On the other hand, the loss of the generator is:

L𝑊 (𝑊 |\𝐷 ) = − 1
𝑛

𝑛∑
𝑖=1

log 𝑃\𝐷 (source = 0|𝑊𝑥𝑖 )

− 1
𝑚

𝑚∑
𝑖=1

log 𝑃\𝐷 (source = 1|𝑦𝑖 )

For every input sample, the discriminator and the mapping
matrix W are trained successively with stochastic gradient
updates to respectively minimize L𝑊 and L𝐷 . Yet, papers
[5] on the subject show that, although innovative, this frame-
work is more useful as a pre-training for the classical model
than as a full-fledged algorithm. Hence our choice not to
explore in more details this avenue.

2.4 Multilingual alignment
A natural way to improve the efficiency of these algorithms is to
consider more than 2 languages. Thus,when it comes to aligning
multiple languages together, two principle approaches quickly come
to mind and correspond to two types of optimization problems:
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• Align all languages to one pivot language, often English,
without taking into account for the loss function other align-
ments. This leads to low complexity but also to low efficiency
between the very distinct language, forced to transit through
English.

• Align all language pairs, by putting them all in the loss func-
tion, without giving importance to any one in particular. If
this improves the efficiency of the algorithm, the counterpart
is in the complexity, which is very important because it is
quadratic in the number of languages.

A trade-off must therefore be found between these two approaches.
Let us consider X𝑖 word embeddings for each language i, i=0 can

be considered as the reference language, W𝑖 is the mapping matrix
we want to learn and P𝑖 the permutation matrix. The alignment
of multiple languages using a reference language as pivot can be
resumed by the following problem:

min
W𝑖 ∈O𝑑 ,P𝑖 ∈P𝑛

∑
𝑖

ℓ (X𝑖W𝑖 , P𝑖X0)

As said above, although this method gives satisfying results con-
cerning the translations towards the reference language, it provides
poor alignment for the secondary languages between themselves.
Therefore an interesting way of jointly aligning multiple languages
to a common space has been brought through by Alaux and al.[1].
The idea is to consider each interaction between two given lan-
guages, therefore the previous sum becomes a double sum with two
indexes i and j. To prevent the complexity from being to high and
in order to keep track and control over the different translations,
each translation between two languages is given a weight 𝛼𝑖 𝑗 :

min
Q𝑖 ∈O𝑑 ,P𝑖 𝑗 ∈P𝑛

∑
𝑖, 𝑗

𝛼𝑖 𝑗 ℓ
(
X𝑖Q𝑖 , P𝑖 𝑗X𝑗Q𝑗

)
The choice of these weights depends on the importance we want
to give to the translation from language i to language j.
The previous knowledge we have on the similarities between two
languages can come at hand here, for they will have a direct influ-
ence on the choice of the weight. However choosing the appropriate
weights can be uneasy. For instance giving a high weight to a pair
of close languages can be unnecessary and doing the same for two
distant languages can be a waste of computation. In order to reach
this minimization effectively, they use an algorithm very similar to
the stochastic optimization algorithm described above.

At the beginning, we wanted to use this algorithm to incorporate
exogenous knowledge about languages to propose constants 𝛼𝑖 𝑗
more relevant and leading to greater efficiency. Different techniques
could result in these parameters: from the mathematical literature
such as the Gromov-Wasserstein distance evoked above or from
the linguistic literature, using the etymological tree of languages
to approximate their degree of proximity or even from both. In the
article implementing this algorithm, it is however specified that
the final 𝛼𝑖 𝑗 are actually very simple: they are N if we consider a
link to the pivot or 1 otherwise. Practical simulations have also led
us to doubt the efficiency of this idea. This is why we decided to
focus on the idea below that seemed more promising rather than
on multialignments.

3 WORD TRANSLATION AS A RETRIEVAL
TASK: POST-ALIGNMENT LEXICON
INDUCTION

The core idea of the least-square problem of optimization inWasser-
stein Procustes is to minimize the distance between a word and its
translation. Hence, given the alignment, the inference part first just
consisted in finding the nearest neighbors (NN). Yet, this criterion
had a mayor issue: Nearest neighbors are by nature asymmetric: y
being a K-NN of x does not imply that x is a K-NN of y. In high-
dimensional spaces, this leads to a phenomenon that is detrimental
to matching pairs based on a nearest neighbor rule: some vectors,
called hubs, are with high probability nearest neighbors of many
other points, while others (anti-hubs) are not nearest neighbors of
any point. [28]
Two solutions to this problem have been brought through new cri-
teria, aiming at giving similarity measure between two embeddings,
thus allowing to match them appropriately. Among them, the most
popular is Cross-Domain Similarity Local Scaling (CSLS) [5]. Other
exist such as Inverted Softmax (ISF)[4], yet they usually require to
estimate noisy parameter in an unsupervised setting where we do
not have a direct cross-validation criterion.

The idea behind CSLS is quite simple: it is a matter of calculating
a cosine similarity between the two vectors, subtracting a penalty
if one or both of the vectors is also similar at many other points.
More formally, we denote by NT (𝑊𝑥𝑠 ) the neighboors of 𝒙𝑺 for
the target language, after the alignment (hence the presence of
W). Similarly we denote by NS (𝑦𝑡 ) the neighborhood associated
with a word 𝑡 of the target language. The penalty term we con-
sider is the mean similarity of a source embedding 𝑥𝑠 to its target
neighborhood:

𝑟T (𝑊𝑥𝑠 ) =
1
𝐾

∑
𝑦𝑡 ∈NT (𝑊𝑥𝑠 )

cos (𝑊𝑥𝑠 , 𝑦𝑡 )

where cos(...) is the cosine similarity. Likewise we denote by 𝑟S (𝑦𝑡 )
the mean similarity of a target word 𝑦𝑡 to its neighborhood. Finally,
the CSLS is defined as:

CSLS (𝑊𝑥𝑠 , 𝑦𝑡 ) = 2 cos (𝑊𝑥𝑠 , 𝑦𝑡 ) − 𝑟T (𝑊𝑥𝑠 ) − 𝑟S (𝑦𝑡 )

However, it may seem irrelevant to align the embedding words
with the NN criterion metric and to use the CSLS criterion in the
inference phase. Indeed, it creates a discrepancy between the learn-
ing of the translation model and the inference: the global minimum
on the set of vectors of one does not necessarily correspond to
the one of the other. This naturally led to modify the least-square
optimization problem to propose a loss function associated with
CSLS [27]. By assuming that word vectors are ℓ2− normalized, we
have cos (Wx𝑖 , y𝑖 ) = x⊤

𝑖
W⊤y𝑖 . Similarly, we havey𝑗 −Wx𝑖

2
2 = 2 − 2x⊤𝑖 W

⊤y𝑗 .

Therefore, finding the 𝑘 nearest neighbors ofWx𝑖 among the ele-
ments of Y is equivalent to finding the 𝑘 elements of Y which have
the largest dot product with Wx𝑖 . This equivalent formulation is
adopted because it leads to a convex formulation when relaxing
the orthogonality constraint onW. This optimization problem with
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the Relaxed CSLS loss (RCSLS) is written as:

minW∈O𝑑

1
𝑛

∑𝑛
𝑖=1 −2x⊤𝑖 W

⊤y𝑖
+ 1
𝑘

∑
y𝑗 ∈N𝑌 (Wx𝑖 ) x

⊤
𝑖
W⊤y𝑗

+ 1
𝑘

∑
Wx𝑗 ∈N𝑋 (y𝑖 ) x

⊤
𝑗
W⊤y𝑖

A convex relaxation can then be computed, by considering the
convex hull of O𝑑 , i.e., the unit ball of the spectral norm. The results
of the papers [5] point out that RCSLS outperforms the state of the
art by, on average, 3 to 4% in accuracy compared to benchmark. This
shows the importance of using the same criterion during training
and inference.

Such an improvement using a relatively simple deterministic
function led us to wonder whether we could go even further in
improving performance. More precisely, considering Word trans-
lation as a retrieval task, the framework implemented was that of
a ranking problem. In order to find the right translation, it was
important to optimally rank potential candidates. This naturally
led us to want to clearly define this ranking problem and to use the
state of the art research on raking to tackle it. In this framework,
the use of simple deterministic criteria such as NN, CSLS or ISF was
a low-tech answer and left a large field of potential improvement
to be explored.

However, we wanted to keep the unsupervised framework, hence
the idea of training the learning to rank algorithms on the learning
of the translation of a language pair, English-Spanish for instance,
assuming the existence of a dictionary. This would then allow us
to apply the learning to rank algorithm for another language pair
without dictionary, English-Italian for instance. Similarly to the
case of CSLS, the criterion can be tested first at the end of the
alignment carried out thanks to the Procustes-Wasserstein method.
Then, in a second step, it can be integrated directly through the
loss function in the alignment step. The following will quickly
present the learning to rank framework in order to understand our
implementation in more detail.

4 LEARNING TO RANK
Although ranking problems can be often found similar to regression
and classification, they are essentially different. When classification
and regression models intend to predict a score for each individ-
ual datapoint as accurately as possible, ranking algorithms aim
at sorting out the entire dataset, thus putting forward the more
relevant points. Learning to rank methods can mostly be put into
three different groups : pointwise, pairwise and listwise algorithms.
Learning to rank algorithms are very important in the field of rele-
vance ranking. This appears to be crucial in information retrieval
and search engine optimization.[10].
Deep learning techniques have recently provided great help for
information retrieval, and therefore the most modern learning to
rank methods use deep neural networks. For example the Deep-
Rank algorithm has been created to simulate the human judgement
process in the relevance ranking of various elements. DeepRank
includes three consecutive actions: a Detection Strategy, a measure
network and an aggregation network.

4.1 Neural learning to rank with Tensorflow
We implemented a learning to rank algorithm from a library called
Tensorflow which uses neural networks for ranking.
The benefits of using neural networks are of two kinds: First the
performance is clearly boosted in comparison to standard Learning
to Rank tasks, and secondly the algorithm will learn the model
directly from the data without having to handcraft any feature (for
instance, for a document these handcrafted features would be word
scores, page quality, url length...) [7].

Figure 2: Learning to rank algorithms usual architecture [8].

Tensorflow is a deep learning framework in which computation
is a dataflow graph with the operations being the nodes and the
tensors the edges. Tensorflow enables us to use deep neural net-
works for our project and output various graphs and figures, since
Tensorflow monitors particularly efficiently the performance of it’s
neural networks.
The TensorFlow Ranking Algorithm we implemented has the fol-
lowing architecture:

Figure 3: TensorFlow-Ranking Architecture [7].

One notable asset is that the algorithm requires very little trans-
formation of the input data, thus allowing us to make it easily
communicate with the alignment FastText data sets.
The core component of the TensorFlow ranking framework is the
model-fn function, which receives labels and features and outputs
loss, prediction, metrics and training ops according to the chosen
mode (Train, Eval or Predict).
The goal of learning-to-rank is to learn a ranking function f from
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training data so that items as ordered by f reach maximal utility.
Practically, this ranking function appears to be more of a scoring
function. This function is learned by minimizing a loss function, or
maximizing utility, which are calculated thanks to ranking metrics.
Wewill now go through the different components of the algorithm’s
architecture.

4.2 Scoring Function
Since finding a direct permutation in order to sort the input data
appears to be excessively costly, a score-and-sort approach is used
instead.
If ℎ : 𝑋𝑛 → R𝑛 is the scoring function taking a list of items 𝑥 as
input and providing a list of scores𝑦. Then ℎ(.) |𝑘 will represent the
𝑘th dimension of ℎ(.). ℎ induces therefore a permutation 𝜋 such
that ℎ(𝑥) |𝜋−1 (𝑟 ) is monotonically decreasing for increasing ranks 𝑟 .
This allows us to build a shrewd scoring function without having a
high complexity.

The scoring function is a parametrized function that can be either
single item or multi item. A single item scoring function will be
alike:

ℎ(𝑋 ) = [𝑓 (𝑥1); 𝑓 (𝑥2); . . . ; 𝑓 (𝑥𝑛)]

with the 𝑥𝑖 being the features of one data point, ℎ outputs a
global score. In comparison a multi item scoring function takes for
input a group of data points:

ℎ(𝑋 ) = [𝑓 (𝑥11, 𝑥12 ...); 𝑓 (𝑥21, 𝑥22 ..); . . . ; 𝑓 (𝑥𝑛1, 𝑥𝑛2, 𝑥𝑛3 ....)]

The group size of the input sample will have its importance: Indeed
the higher the group size is, the more interactions between data
points will be taken into account. However big sized groups have a
high computation cost since each variable is considered regarding
the other ones in the group. The prize of a rise in efficiency is here
a higher computation time. The relation between group size and
efficiency will be studied in Figure 5.
The purpose of the scoring function is to map a set of input items
𝑥𝑖 to a set of scores. Scoring functions can be linear functions
[19]., boosted weak learners [20], gradientboosted trees [21] [22],
support vector machines [23] [24], and neural networks [25] for
instance. TensorFlow provides a neural network as basis of the
scoring function.

4.3 Ranking metrics
The ranking head’s purpose displayed on the TensorFlow architec-
ture figure is meant to compute ranking metrics, scores and ranking
losses.
The ranking metrics will enable us to measure the utility of an
ordered list of items. The goal is to have as few as possible errors
at higher ranked positions. Below are some examples of most used

ranking metrics:

𝑅𝑅(𝜋,𝑦) = 1
min𝑗

{
𝑦
𝜋−1 ( 𝑗 )>0

}
𝑅𝑃 (𝜋,𝑦) =

∑𝑛
𝑗=1 𝑦 𝑗𝜋 ( 𝑗)∑𝑛

𝑗=1 𝑦 𝑗

DCG(𝜋,𝑦) = ∑𝑛
𝑗=1

2𝑦𝑗 −1
log2 (1+𝜋 ( 𝑗))

NDCG(𝜋,𝑦) = DCG(𝜋,𝑦)
DCG(𝜋∗,𝑦)

where 𝑦𝑖 ∈ 𝒚 are the labels allowing us to obtain 𝜋∗, and 𝜋 (𝑖)
is the rank of the 𝑖th item in 𝑥 .𝑅𝑅 is the reciprocal rank of the
first relevant item. 𝑅𝑃 is the positions of items weighted by their
relevance values. DCG is the Discounted Cumulative Gain, and
NDCG is DCG normalized by the maximum DCG obtained from
the ideal ranked list 𝜋∗. The mean of these metrics is calculated
and provided if many example samples are given. For instance the
mean of the reciprocal rank would be𝑀𝑅𝑅 = 1

𝑚

∑𝑁
𝑘=1 𝑅𝑅

(
𝜋𝑘 ,𝒚𝑘

)
4.4 Loss functions
The intern goal of the learning to rank algorithm will be to find
a specific 𝑓 ∗ function that minimizes the empirical loss obtained
thanks to the training data:

𝑓 ∗ = argmin
𝑓 :𝑋𝑛→Π𝑛

1
𝑚

∑
(𝒙,𝜋∗) ∈𝑆𝑚

ℓ
(
𝜋∗, 𝑓 (𝒙)

)
with 𝑆𝑚 = {(𝒙, 𝜋∗) |𝒙 ∈ 𝑋𝑛, 𝜋∗ ∈ Π𝑛} being the training data set
of m items. 𝜋∗ is a permutation that can be seen as a ranking of
the data x induced by a list of labels. The exact form of this loss
function will depend on the approach chosen should it be pointwise,
pairwise or listwise [9].

4.5 Pointwise approach
In a pointwise learning to rank algorithm, the X input is an em-
bedding and the Y output is a relevance degree. The algorithm will
be trained to maximise the relevance degree of a given input. For
instance logistic regression is an example of a pointwise algorithm.
In our context, we need to get as an output a classification of the
neighbouring word embeddings of our word input X. A relevance
numerical estimation will not provide enough accuracy for our
task and will require sorting algorithms to end up with the desired
output.

4.6 Pairwise approach
Pairwise algorithms such as RankSVM receive in input a pair of
embeddings and outputs the preferred one between both of them.
This allows us to choose between two embeddings. However our
need can concern a number n of input embeddings with n being
higher than 2 if we want to train a function intelligent enough to
choose a translation word among many surrounding ones.
The goal here is to order correctly given pairs of embeddings.
[11].This task is done by minimizing the following loss function:∑

𝑞

𝑚𝑞∑
𝑖, 𝑗,𝑙

𝑞

𝑖
>𝑙

𝑞

𝑗

ℓ

(
𝑓

(
x𝑞
𝑖

)
− 𝑓

(
x𝑞
𝑗

))
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The RankSVM algorithm uses ℓ (𝑡) = max(0, 1 − 𝑡) [12] whereas
the RankNet program has ℓ (𝑡) = log(1 + exp(−𝑡)) [13] and the
GBRank method uses a quadratic loss, close to the Rank SVM one:
ℓ (𝑡) = max(0, 1 − 𝑡)2

4.7 Listwise approach
The Listwise method receives as an input a list of embeddings and
outputs the same list sorted.
In this approach the loss function recieves in input all the embed-
dings given by the query: ℓ

({
𝑓

(
x𝑞
𝑗

)}
,

{
𝑙
𝑞

𝑗

})
for 𝑗 = 1 . . .𝑚𝑞

There are mostly two types of listwise programs : the first type take
no notice of Information Relevance measures while the training is
running. This is the case for ListNet [15] and ListMLE [16] . The
other type attempts to optimize the Information Relevance measure
throughout the training. The famous examples are AdaRank [17]
and SoftRank [18] . We observe that, for a majority of problems, a
listwise loss performs better than a pairwise loss, which is in turn
better than a pointwise loss.

Taking into consideration the previous points, the following
section will present our work, combining these different techniques
in an innovative way.

5 RUBI: RANKED UNSUPERVISED
BILINGUAL INDUCTION

Motivations: Let’s describe more precisely the functioning of our
algorithm, denoted RUBI, although already mentioned in previous
sections. Two points guided our approach:

• From a linguistic point of view, there is obviously a learning
to learn phenomenon for languages. We observe that by
assimilating the structure of the new language, its grammar
and vocabulary to one of the already known languages, it is
easier for us to create links that help learning. It is the search
for these links that motivates us and we are convinced that
they can be useful when inferring vocabulary.

• improvement induced by the use of the CSLS criterion sug-
gests that there are complex geometrical phenomena (going
beyond the above-mentioned existence of hubs) within the
representations of languages, both ante and post-alignment.
Understanding these phenomena can lead to greatly increased
efficiency.

Framework: Our goal is the same as for unsupervised bilingual
alignment: we have a source language A and a target language
B with no parallel data between the two. We want to derive an
A-B dictionary, a classic BLI task. The specificity of our study is to
assume that we also have a C language and an A-C dictionary at
our disposal. To set up the learning to learn procedure, we proceed
in 2 steps:

• Learning: Using the Procustes-Wasserstein algorithm, we
align languages A and C in an unsupervised way. We then
build a corpus of queries between the words from language
A known from our dictionary and their potential translation
into language C. Classical methods proposed the translation
that maximized the NN or CSLS criteria. In our case, we use
deep learning as part of our learning to rank framework to
find a more complex criterion. One of the innovative features

of our work is therefore to allow access to a much larger class
of functions for the vocabulary induction stage. A sub-part
of the dictionary is used for cross-validation. The way of
rating the relevance of the potential translations, the inputs
of the algorithm, the loss functions are all parameters that
we studied and that are described in the next section.

• Prediction: We thus have at the end of the training an al-
gorithm taking as input a vocabulary word, in the form of
an embedding as well as a list of potential translations. The
output of our algorithm is the list sorted according to the
learned criteria of these possible translations, the first word
corresponding to the most probable translation and so on.
We first perform the alignment of languages A and B us-
ing again the Procustes-Wasserstein algorithm. In a second
step, thanks to the learning to rank, we perform the lexicon
induction step.

Choices and expected results:A number of important points
should be made:

• We assume that C’s learning from A is of interest to B’s
learning. The truthfulness of this hypothesis is an interest-
ing fact that we will be able to study. Realistically, it seems
that learning Chinese from English will help us less to learn
Italian than if we had chosen Spanish in the first place. How-
ever, it gives us a practical measure of proximity between
languages, which is not obvious to infer at first glance and
can be very interesting.

• We choose to use the Procustes-Wasserstein algorithm in the
translation stage because we believe that maintaining the
alignment method throughout our study allows us to truly
evaluate its effectiveness and the specific geometric changes
it induces. Since we assume that we have a dictionary at our
disposal, we could use supervised methods, but they would
not work in the same way.

• The multi-alignment scenario does not assume the existence
of this dictionary. Realistically, however, it is consistent with
existing use-case to assume that it is available.

Finally, a final conceptual point is important to raise. In the
context of the CSLS criterion, we have seen in the above that its use
after alignment has improved. However, actually incorporating it
in the alignment phase by modifying the loss function has allowed
for greater consistency and a second improvement. However, these
two changes were separated. Yet, the learning to rank framework is
quite different. The main reason is the non-linearity resulting from
deep-learning, unlike CSLS. The global optimization is therefore
much more complex and does not allow a relaxation to get back
to a convex case. However, it is an area for improvement to be
considered very seriously for future work.

6 EXPERIMENTS AND RESULTS
6.1 Unsupervised word translation
Implementation details: The general parameters used are de-
scribed bellow. They are studied in more depth in the following
subsection.

• Fasttext Word embeddings, learned on Wikipedia corpus,
dimension 300, size 200 000 words. Dictionary of the 5,000
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Method EN-ES ES-EN EN-FR FR-EN
Wass. Proc. - NN 77.2 75.6 75.0 72.1
Wass. Proc. - CSLS 79.8 81.8 79.8 78.0
Wass. Proc. - ISF 80.2 80.3 79.6 77.2
Adv. - NN 69.8 71.3 70.4 61.9
Adv. -CSLS 75.7 79.7 77.8 71.2
RCSLS+spectral 83.5 85.7 82.3 84.1
RCSLS 84.1 86.3 83.3 84.1
RUBI 93.3 (DE) 91.6 (FR) 93.8 (NL) 91.9 (IT )

EN-DE DE-EN EN-RU RU-EN
Wass. Proc. - NN 66.0 62.9 32.6 48.6
Wass. Proc. - CSLS 69.4 66.4 37.5 50.3
Wass. Proc. - ISF 66.9 64.2 36.9 50.3
Adv. - NN 63.1 59.6 29.1 41.5
Adv. -CSLS 70.1 66.4 37.2 48.1
RCSLS+spectral 78.2 75.8 56.1 66.5
RCSLS 79.1 76.3 57.9 67.2
RUBI 93.6 (HU ) 89.8 (FR) 83.7 (HU ) -

Table 1: Benchmark Results for Bilingual Lexicon Induction

most frequent words for training and assessment, dictionary
of the next 1,500 words for cross validation.

• Alignment: Procustes-Wasserstein algorithm, 5 epoch of
5000 iterations. Learning rate of 0.5. Batch size of 500.

• Learning to Rank: 100000 iterations, batch size de 32, dropout
rate of 0.5 for regularization, 3 hidden layers of size 256, 128
and 64, Adagrad Optimizer, group size of 4, queries of 10
potential translations (selected using the NN) for each 5000
words in dictionary. 11 Features (Similarity and CSLS(i) for i
in [1,10] relative to the query word).

Baselines: We compare our method with Wasserstein-Procrustes
(Wass. Proc.) [2], as well as two unsupervised approaches: the ad-
versarial training (adversarial) of Conneau et al.[5] and the Relaxed
CSLS loss (RCSLS) [27]. All the numbers are taken from their papers.
The reference benchmark is the translation from English to French,
Spanish, Russian and German as well as the reverse translation.
Mains results: In order to quantitatively assess the quality of each
approach, we consider the problem of bilingual lexicon induction.
Following standard practice, we report the precision at one. Con-
trary to other methods, we use an auxiliary language, which we
show in brackets next to the result. We then specifically study this
choice in relation to the translation. The general parameters used
are described above. Table 1 summarizes our results, compared to
existing state of the art on reference BLI task. Our method outper-
forms all existing methodology, with a vast margin. Hence, Our
assumption that learning a language for training purposes brings
a lot is confirmed. Without even going into the alignment phase,
our criterion brings a real gain for unsupervised translation, for a
reasonable computational complexity (about fifteen minutes per
translation). the major contribution is for English-Russian trans-
lation, with a gain of 35% compared to the best existing method
(Russian-English translation is not included because we had no
access to dictionaries required for the learning phase).

Pivot ES-EN FR-EN DE-EN PT-EN
ES - 91.6 83.3 88.8
FR 91.6 - 89.8 89.8
IT 91.3 91.9 88.5 89.4
DE 90.0 91.5 - 89.8
PT 91.4 91.6 89.8 -

Table 2: BLI efficiency for reverse translation to English

Table 2 summarizes for French, Italian, Russian, Portuguese and
German the BLI for translation to English. These were the only
languages for which we had dictionaries between each pair. This
allowed us to set up a learning step without English being one of
the two languages, which was impossible for the more complete list
of languages we used afterwards. The best result is the one shown
above in Table 1.

6.2 Ablation Study
In this section, we evaluate the impact of some of our implementa-
tion choices on the performance of RUBI. We focus in particular
on the loss function, the query size, the group size as well as the
features and relevance system used .

6.2.1 Impact of Loss function: As described above, the learn-
ing to rank framework allows the use of numerous loss functions
corresponding to different scenarios (0-1 relevance, pointwise, list-
wise and pairwise...). In our case, we wanted to maximize the BLI
criterion, i.e. to have the maximum performance just for the top of
the list in order to be able to compare our work with the existing
literature. Other objectives can be considered, such as maximizing
the presence of the right translation among the first X suggestions
and then manually look for the correct translation in this subset.
We have therefore added the BLI criterion among the other cri-
teria (NDCG, RP, RR...). The closest existing one was NDCG@1
(1st position). We then tested a large majority of the existing loss
functions to see which one was the most efficient given our objec-
tive. The graph below presents the results for 5 of these functions,
representative of the different existing categories. The evaluation
criterion is the BLI for EN-ES translation. The two functions that
perform best are the Approximate NDCG loss (which maximizes a
differentiable approximation of NDCG) and the MLE loss list (which
maximizes the likelihood loss of the probability distribution). In
other experiments, we found that these two loss functions continue
to perform similarly, hence our default choice of Approx NDCG.
We have also shown this function with a group size of 1 and 2
(parameter described in the learning to rank section).

6.2.2 Impact of group size: As seen above, group size has a
great influence on our criterion. This is quite consistent given our
concern for ranking compared to other embeddings. The dilemma
is however to optimize the computation time because increasing
the group size exponentially increases the number of calculations.
The graph below presents the BLI criterion for EN-ES, using two
loss functions and varying the group size. A clear improvement can
be observed. However, the biggest increase seems to occur when
changing the group size from 1 to 2 and then the curve stabilizes.
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Figure 4: Loss function Impact.

Therefore, in our computations, we used mainly a group size of 2
and often of 4 when looking for greater accuracy.

Figure 5: Group Size Impact.

6.2.3 Impact of feature system: As stated above, our framework
receive as input a query list i.e. for each word in the dictionary, a
list of potential translation. For each of these potential translation,
we compute a relevance label (estimated using ground truth) and a
list of features. The relevance label is used only for the training and
we be studied bellow. The features for the each potential translation
in a query can incorporate several elements:

• the word embedding of the potential translation (size 300)
• the word embedding of the query (size 300)
• pre-computed features such a distance to query word in the
aligned vector space, CSLS distance, ISF....

Those features are crucial for the learning as it will fully rely on it.
At first, we decided to only use the word embedding of the potential
translation and of the query. That gave us a 600 feature list. However,
after several experiments, we noticed that the learning to rank
algorithm, despite the variation of the parameters, was not able to
learn relevant information from these 600 features, the performance
was poor. The function learned through deep learning was less
efficient than a simple Euclidean distance between the potential
translation and the query (NN criterion). In fact, after consulting
the literature, we realised that using such a number of features is
not very common. Most algorithms were only using pre-computed
features (often less than a hundred). Although this information
is already interesting in itself, we therefore turned to the second
approach. We chose to restrict ourselves to certain well-specified

types of pre-computed features in order to evaluate their full impact.
More precisely, for a fixed k parameter, we provided as features the
euclidean distance to the query, as well as the CSLS(i) "distance"
for i ranging from 1 to 𝑘 . In other words, we provided information
about the neighborhood through the penalties described in the
section on CSLS. In the context of this work, we did not want
to use other features (ISF in particular) to focus specifically on
the contribution of CSLS but this is an easy improvement path to
exploit for future work. As outlined above, this simple framework
allows a considerable improvement of the BLI. Below, we describe
the evolution of the BLI for EN-ES translation by varying the 𝑘
parameter. 𝑘=0 correspond to the use only of euclidean distance to
the query. We observe a major increase for 𝑘 from 0 to 1, a lesser
increase for 𝑘 from 1 to 4-5 and stabilization thereafter, with a slight
maximum towards 𝑘=14.

This leads us to believe that the relevant information for the
algorithm is just in the close neighborhood of the point (i.e. the
few closest neighbors) and the addition of features describing a
more distant neighborhood brings only marginal information. This
preliminary conclusion is clearly worth further study. Indeed, the
functioning of the neural network at the very heart of the learning
to rank algorithm is that of a black box and this conclusion deserves
to be reinforced. Its veracity would allow a better understanding of
the phenomenon of hubbness in the context of word embeddings
clouds.

Figure 6: CSLS feature Impact.

6.2.4 Impact of query relevance: The learning to rank frame-
work used makes it possible to rate the relevance of a word em-
bedding in relation to a query thanks to a system of integers. A
relevance of 0 translates a non relevance, then the higher the rele-
vance is, the more the word embedding will be relevant i.e. close to
the translation. For the ranking of the list of potential translations,
it is these relevancies that will be used. For the pointwise loss func-
tion (i.e. regression problem), it will be a matter of predicting these
labels. In the peerwise and listwise functions, it is more complex.
We have considered 3 relevance scenarios. This relevance setting is
the key of a good algorithm as it represent the function we aim to
learn. With this in mind, we tried three different options:

• BinaryRelevance:The correct translation and its synonyms
have a relevance of 1, the other candidates have a relevance
of 0 (not relevant). This system allows to use some specific
loss functions very efficiently in these scenarios (like sigmoid
cross entropy loss). However, the context of our study was
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not very appropriate for this relevance system. Indeed, we of-
ten had only one correct translation per query, for about ten
erroneous translations. The algorithm was therefore not able
to learn about the corpus of good translations and almost
systematically predicted that the translation was erroneous,
i.e. a relevance of 0.

• Continuous Relevance: On the other hand, we asked our-
selves how to translate the relevance of a potential candidate
for translation, even if it is not the right translation or a
synonym. In other words, how do you extract the informa-
tion it contains? The previous approach only considered the
question: "is this a correct translation ?" instead of asking "to
what extend is this a correct translation ?" In this context,
we had 3 suggestions:
– Intra-distance: The core idea of word embeddings is to
translate the contextual proximity of 2 words into a prox-
imity in terms of distance in a space. Therefore, if we are
interested in the relevance of a word ("dog") in the con-
text of a translation ("chat"), we can consider the distance
between the embeddings of the candidate ("dog") and the
correct translation ("cat"). We talk about intra-distance
because it’s a distance in the target space. When these
distances are calculated, we can then classify the words by
proximity and give them a label of relevance thanks to this.
Although appealing on paper, this approach led to poor
results for a hidden reason: the learning to rank algorithm
sought tomaximize the ordering of the response list.When
it was given too many distinct possible labels, it made it
easier to make a large number of correct predictions about
the relative ranking in the answer list. Maximizing the
top of the list, which is our main interest, was no longer a
priority at all. The other concern was that in very large
dimensions, the notion of distance also lost its meaning.
It was therefore less relevant to note these distances.

– Extra-distance: In a logic close to the previous method,
we wondered if it could be interesting to consider the
distances in the source space instead of those in the target
space. In other words, instead of looking at the distance
between our candidate ("dog") and the correct translation
("cat") of the target word ("chat"), we could look at the
translation of the candidate in the source space ("chien")
and look at the distance between this translation and the
word to be translated. This idea was therefore based on
the word embeddings in the source space and did not use
the word embeddings in the target space. Unfortunately,
we didn’t have a dictionary for each of the 200,000 words
used, so this passage in the source space was complicated
to settle.

– Exogenous distance: We finally wondered if we could
incorporate an exogenous distance thanks to external al-
gorithms that could provide a proximity between words
other than the one given by the embeddings (syntactic,
etymological...). This track remains in our suggestions
for improvement but the poor results obtained with the
intra-distance method dissuaded us from exploring it right
away.

• Semi-binary: The solution chosen for the implementation
was a trade off between the two previous approaches: the
correct translation and its synonyms receive a label of 2 and
the other words receive a label of 1 (very low relevance).
This pushes the algorithm to focus as much as possible on
the correct translation while using the above information in
the words (to a lesser extent).

6.2.5 Impact of query size: Finally, we studied the impact of the
size of the query i.e. the number of potential translations provided
for each word. A large number of potential translations gives you
more choice but the risk of getting it wrong is greater. One must
also ask whether the algorithm is able to learn in a relevant way
if it is provided with a large amount of information (given that
a semi-binary relevance system is used). The experience setting
is the same as for the previous points (BLI induction for EN-ES).
There is a low incidence of the number of queries on the results,
a very slight but perceptible decrease. The algorithm is therefore
able, despite a large number of candidates, to discern the correct
information.

Figure 7: Query Size Impact.

6.3 Impact of learned idiom in inference
Experiment details: In this section, we evaluate the impact of the
idiom used for learning when it comes to translation. As it is very
costly to compute, we only used our 4 reference languages as target
to begin: Spanish (ES), French (FR), German (DE) and Russian (RU).
More computation are currently on their way. Facebook data gave
us access to dictionary from English to more than 20 idioms. The
following table present the BLI criterion for the translation using
the idiom in the left for the learning process. The last line is the
benchmark for the translation associated with this pair, using one of
the other previously described unsupervised learning methodology.
The last columns deals with the learning part: the first digit is the
is the BLI criterion obtain for the learning language at the end of
the training. The second one is the BLI criterion for the learning
language obtained when aligning and translating this idiom with
English, using Wasserstein Procrustes Unsupervised Alignment
and CSLS criterion)[2]. If the first number does not appear, it means
that the alignment is of poor quality and that the learning step
leads to blatant over-feating, so the number makes little sense.

Mains results: Several conclusions can be drawn from this table:
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• Prediction stability: There is a strong stability for the pre-
diction of a given language. Except for languages very poorly
aligned with English, the results seem to be globally identical
when the idiom used for learning varies (difference of less
than 1%). This leads to more remarks. Although the learning
to rank algorithm is a black box, it seems that it always leads
to a similar criterion at the end of the learning process, a
criterion much more powerful than those used so far (NN,
CSLS, ISF among others). The proximity between the learn-
ing language and the prediction is not in play, it is a very
strong result. The findings in the next section support this
observation. This reinforces the hypothesis of the similarity
of the word cloud structure and thus legitimizes the global
approach of the alignment implemented. The performance
obtained during the learning process does not seem to be
correlated with the performance of the predictions either.
We can also ask ourselves whether using several languages
during the learning phase is really worthwhile. This seems to
be a logical next step for the project, but this remark suggests
a lesser increase in terms of efficiency.

• Impact of Target Language: There is, however, a strong
variation in the BLI criterion depending on the language to
be predicted. This point will be studied in more detail later.
Yet, this variation seems to be positively correlated with the
quality of the alignment of this language with English. Thus,
Russian performs less well than German or French in this
process. However, these results should be highlighted: the
greatest contribution of our method is precisely for Russian
when compared to existing benchmarks.We observe a gain of
more than 25%, while those for French, Spanish and German
are around 10%.

• Learning step: The training performance (last columns)
seems to depend directly on the quality of the alignment of
the language used for learning with English. Figure 8 plots
the BLI criterion in the training step according to the CSLS
criterion, i.e. the quality of the alignment of the language
used for learning with English. The trend that emerges is
that of a very clear positive correlation (linear trend plotted
in red, R2 = 0.82). We have also shown the averages per
language family (Romance, Germanic and Uralic). In conclu-
sion, it seems easier to learn using a language that is well
aligned with English. Although this seems logical, it is not
that obvious. Three clusters seem to appear in conjunction
with the different families. Romance languages are associ-
ated with a high rate of alignment with English and therefore
with high performance in the learning stage. The Germanic
language cluster has a lower performance combined with
a slightly lower quality alignment. Knowing that English
belongs to the Germanic language type, it is interesting to
note this slight underperformance in alignment compared
to Romance. Finally, the Slave cluster shows the worst per-
formance in terms of alignment with English and therefore
also the worst for the learning step.

Pivot idiom EN-ES EN-FR EN-DE EN-RU Training
Romance
French 95.0 - 92.9 81.0 92.5 / 80.2
Italian 95.2 93.6 93.0 82.1 89.6 / 76.3
Portuguese 94.8 93.6 92.6 81.1 91.3 / 81.3
Spanish - 93.7 93.1 81.5 92.4 / 82.1
Catalan 94.8 93.3 92.4 81.6 87.0 / 63.4
Romanian 94.9 93.5 92.1 80.7 84.4 / 60.0
Germanic
Dutch 95.3 93.8 93.0 81.4 88.1 / 74.3
German 94.6 93.0 - 82.7 90.7 / 70.9
Norwegian 95.2 93.7 93.0 81.1 84.7 / 62.4
Danish 95.0 93.4 93.1 81.6 85.6 / 63.7
Swedish 48.2 40.2 67.9 64.4 - / 0.2
Slavic
Russian 95.2 93.6 93.5 - 76.0 / 42.6
Ukrainian 94.9 93.2 93.1 83.2 77.4 / 32.4
Slovak 94.2 92.5 92.8 81.7 - / 14.8
Polish 95.1 93.4 93.5 82.6 79.1 / 49.1
Bulgarian 95.3 93.5 92.8 82.2 80.3 / 47.1
Czech 95.2 93.7 93.5 82.9 78.9 / 49.7
Croatian 94.9 93.5 93.1 82.7 76.6 / 34.1
Slovenian 94.9 93.4 93.1 82.2 79.1 / 33.9
Macedonian 47.4 40.6 68.0 63.4 - / 0.6
Others
Hungarian 95.2 93.7 93.6 83.7 79.6 / 48.0
Estonian 47.6 41.8 68.7 65.2 - / 0.4
Greek 95.2 93.5 93.0 82.5 83.5 / 48.5
Arabic 94.5 93.4 93.3 82.6 84.2 / 38.4
Hebrew 94.7 93.4 93.1 82.3 78.3 / 42.1
Indonesian 94.7 93.1 92.7 80.6 85.4 / 71.7
Turkish 46.5 38.0 68.2 62.9 - / 0.3
Vietnamese 41.5 36.6 66.3 59.2 - / 0.1
Benchmark 84.1 83.3 79.1 57.9

Table 3: BLI Results for English Translation using all avail-
able idioms

Figure 8: Impact of Alignment Quality on Training.
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6.4 Impact of target idiom in inference
Experiment details: Finally, we evaluate the impact of the idiom
used for prediction when it comes to translation. We used 4 dif-
ferent languages for the learning step: French, Spanish, German
and Russian. The previous section had shown that the language
used for learning had little impact on prediction, hence the limited
choice of languages. We then try to deduce for more than twenty
languages the dictionary with English. Table 4 presents the results
of this study. The languages to be predicted are in the left-hand
column and those used for learning are in the first row. The last
line is the benchmark used. This is again the BLI at the end of the
alignment and reflects the quality of the alignment with English.
Mains results:We can make the following observations:

• Performances: The algorithm is very efficient and allows
to obtain a BLI criterion of at least 80% up to 95%, even
more for all languages whereas the previous techniques were
much less efficient. RUBI makes it possible to establish a new
benchmark of quality to be surpassed in this task, which we
hope can become a reference. The minimum gain observed
is 10%, which in the literature on the subject is considerable.

• Efficiency Forecasting: We wondered whether we could
quantify the contribution of our method in relation to the
existing benchmark. Figure 9 shows the gains in terms of BLI
points (e.g. +20% corresponds to a change from a 60% BLI
benchmark to an 80% BLI benchmark) as a function of the
quality of the initial alignment, i.e. the benchmark. We ob-
serve a very strong negative correlation (linear trend plotted
in red, R2 = 0.96). This negative correlation is quite logi-
cal: it is easier to have a big BLI gain for languages initially
misaligned with English. This line gives access to a first pre-
diction, given the alignment of a language with English on
the contribution that our method can give. This prediction
seems very stable and relevant. Here again, we observe three
clusters: the Romance and Germanic languages have initially
a good alignment with English and thus present a relatively
weak grain. The Slavic cluster gathers languages that are
less well aligned with English and therefore has a lot to gain
from our method. It also includes most of the category other
languages.

• Distant idioms:It should be noted, however, that we did not
use some accessible languageswith poor alignmentwith Eng-
lish: Estonian (0.46%), Macedonian (0.58%), Swedish (0.24%),
Turkish (0.28%) or even Vietnamese (0.08%). These languages
are interesting because they may represent the type of lan-
guages for which there is no parallel data with English. How-
ever, this is another type of scenario, which deserves to be
studied separately. Some parameters need to be adapted for
this distinct use case. For example, it is rarer that the correct
translation is so close in the aligned space to the query word.
It is necessary to look more for each query in the hundred
candidates than in the ten, as we do at present. However,
this is an exciting avenue to explore in the future.

7 CONCLUSION
This paper formulate a new approach to the unsupervised bilin-
gual lexicon induction problem, using learning to rank tools. Our

Learning idiom Spanish French German Russian Bench.
Romance
French 93.7 - 93.0 93.6 80.2
Italian 91.5 91.8 91.4 91.6 76.3
Portuguese 94.0 93.8 93.8 93.9 81.3
Spanish - 95.0 94.6 95.2 82.1
Catalan 87.3 87.1 85.3 86.8 63.4
Romanian 88.4 88.5 87.7 87.9 60.0
Germanic
Dutch 90.5 90.3 90.1 90.3 74.3
German 93.5 92.9 - 93.5 70.9
Norwegian 86.1 85.4 86.0 86.6 62.4
Danish 89.4 89.7 89.0 89.8 63.7
Slavic
Russian 81.5 81.0 82.7 - 42.6
Ukrainian 82.3 80.2 82.7 83.3 32.4
Polish 86.2 85.6 86.3 87.3 49.1
Bulgarian 84.5 84.3 84.5 85.1 47.1
Czech 82.5 82.9 83.6 84.4 49.7
Croatian 78.4 77.8 77.9 78.8 34.1
Slovenian 80.6 79.8 80.5 82.2 33.9
Others
Hungarian 79.4 79.5 79.6 79.6 48.0
Greek 86.0 86.0 86.6 87.3 48.5
Arabic 87.1 85.4 87.4 88.6 38.4
Hebrew 79.4 79.0 79.6 80.3 42.1
Indonesian 90.2 89.9 90.1 89.9 71.7

Table 4: BLI Results for all idioms Translation using ES, FR,
DE and RU for learning

Figure 9: Gain (points of BLI) after the use of RUBI in func-
tion of the quality of alignment.

approach, leveraging knowledge of previous idioms acquisition,
significantly improves the quality of the induction, outperforming
state of the art methodology and setting a new benchmark. As a
result, it produces high-quality dictionaries between different pairs
of languages, with up to 93.8% on the Spanish-French word trans-
lation task. Moreover, we point out the stability of the prediction
when the idiom used for learning varies, a strong argument in favor
of the similarity of the structure of word embeddings clouds.
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A ONLINE SOFTWARE RESOURCES
To make the discussed results useful and reproducible, our code and the software resources used are freely available online.

• The code, main examples and the files used for tables and graphs are accessible at https://github.com/Gguinet/semisupervised-
alignement.git

• It is still a private directory, however, and we are currently reformatting the code so that it can be made publicly available in the
coming days. All you have to do is ask us for permission to add you to it if you can’t access it.

• All data used (word embeddings and dictionary) are coming from Facebook public files on the topic. A part of it can be found using
the link https://fasttext.cc.

• As the simulations were very demanding in term of computed power, we used Google Compute Engine, with the following settings: 8
virtual processors, n1-highmem-8, high memory capacity, 500 Go of memory, Ubuntu, Version 18.04. More information on how to use
it is on the github file of the project.

https://github.com/Gguinet/semisupervised-alignement.git
https://github.com/Gguinet/semisupervised-alignement.git
https://fasttext.cc
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