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Motivations and Framework

Motivation:

• General Polarization phenomena: "when different people are exposed to
very different sources of information, they are bound to arrive at different
conclusions"
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Motivations and Framework

Motivation:

• General Polarization phenomena: "when different people are exposed to
very different sources of information, they are bound to arrive at different
conclusions"

• Big line of work in Social learning literature (Bayesian Framework,
bounded rationality...)

• Stochastic models of opinion dynamics (echo chamber, Voter Model...)
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Motivations and Framework

Motivation:

• Our interest: Yet, individuals exposed to similar information may still end
up having substantially different opinions !
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Motivations and Framework

Motivation:

• Our goal: Under what conditions does polarization of this type arise, and
can it be prevented through mild interventions?
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Polarization under the lens of Statistical Learning

The objective cost model [Haghtalab et al., 2019]:

• Under realizable distribution D, consistent with f ?, all error-minimizing
agents will arrive at hypotheses that are almost in full agreement with
each other.

• What if we add the notion of complexity of hypothesis f , with agents
looking for a balance between accuracy and such complexity ?
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Framework

Notations:

• Distribution D on X × {−1,+1}, 0-1 loss

• Expected error:

errD(f ) := E(x,y)∼D[I(f (x) 6= y)] = Pr(x,y)∼D[f (x) 6= y ]

• Empirical Error for sample S:

errS(f ) :=
1
m

m∑
i=1

I (f (xi ) 6= yi )
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Framework

Notations:

• Disagreement between two hypothesis f , f̃ ∈ F (pseudo-metric):

∆D
(
f , f ′

)
:= Prx∼D↓X

[
f (x) 6= f ′(x)

]
• Diameter of any given hypothesis set H:

diamD(H) := sup
f ,f ′∈H

∆D
(
f , f ′

)
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Framework

Complexity function φ:

• "Penalized" type ERM:

costλD(f ) := errD(f ) + λφ(f ) and costλS(f ) := errS(f ) + λφ(f )

• Stay as general as possible !
• Penalization or regularization but not only
• Preferences or prior of agents for certain hypothesis
• Potentially meta-hypothesis space
• No structure on F aside form ∆
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Previous results

A quick example:

• Polarization[Haghtalab et al., 2019]: There is F and D such that for any
m and two sets S1,S2 of m i.i.d. samples from D, with probability 1

4 ,
there exists fi ∈ argminf∈F costSi (f ) such that ∆D (f1, f2) > 1

6 .
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Previous results

Main result (Informal):

Theorem
For any desired level of disagreement, it’s possible to add "small" bias in the
distribution D so that agents learning with "sufficient" samples have
disagreement under this threshold.
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Previous results

Main result (Formal Version):

Theorem
For a hypothesis class F (with finite VC dimension), a realizable distribution D
on X × Y, a parameter α ∈ [0, 1] and a maximum level of disagreement γ > 0,
there exists

m ∈ O

(
γ−4α−2

(
VCD(F) + ln

(
1
δ

)))
and realizable distribution D̃, with T V(D, D̃) ≤ α

2 , such that if two sets S1 and
S2 of size at least m are sampled from D̃, then with probability at least 1− δ
any two cost-minimizing hypotheses fi ∈ argminf∈F costSi (f ) for i ∈ {1, 2}

1. have at most γ disagreement over D, i.e., ∆D
(
f̃1, f̃2

)
≤ γ, and

2. have a cost that is optimal up to 3α on D, i.e.

costD
(
f̃i
)
≤ argmin

f∈F
costD(f ) + 3α

11



Limitations, goals and motivations

Our work:

• Robustness, Complexity and Learning: To what extent polarization is
robust w.r.t. the complexity functions ? In others words, what is the
impact of modifications of the complexity function associated with
hypothesis (i.e. education) on polarization ?

• Active Learning and Polarization: Can we learn how to create bias
describe above? In particular, what links can be establish with ideas and
tools from Active Learning Community?
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Robustness, Complexity and Learning

Few more notations:

• Rashomon Set [Fisher et al., 2019, Semenova et al., 2020]:

FDε (λ) :=

{
f ∈ F | costλD(f ) ≤ min

f ′∈F
costλD

(
f ′
)

+ ε

}
• Core Goal: What can we say about this set and his diameter in function of
λ ?
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Robustness, Complexity and Learning

Few more notations:

• Rashomon Set [Fisher et al., 2019, Semenova et al., 2020]:

FDε (λ) :=

{
f ∈ F | costλD(f ) ≤ min

f ′∈F
costλD

(
f ′
)

+ ε

}
• ε-Ball centered in f ?:

B(f ?, ε) :=

f ∈ F | ∆D(f ?, f ) = errD(f )− errD(f ?)︸ ︷︷ ︸
=0

≤ ε

 = FDε (0)
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Robustness, Complexity and Learning

Triple convergence phenomena (pointwise vs uniform):
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Robustness, Complexity and Learning

Triple convergence phenomena (pointwise vs uniform):
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Robustness, Complexity and Learning

Hausdorff (pseudo-)distance induced by pseudo metric ∆

dH(ε, λ) = d(FDε (λ),B(f ?, ε))

:= max( sup
f∈B(f ?,ε)

inf
fλ∈FD

ε (λ)
∆(f , fλ), sup

fλ∈FD
ε (λ)

inf
f∈B(f ?,ε)

∆(f , fλ))

Key properties:

• Uniform notion of convergence between set and (thus)

| diam(B(f ?, ε))− diam(FDε (λ))| ≤ 2dH(ε, λ)
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Quick intermediate summary

Three step approach:

Part I: sup
fλ∈FD

ε (λ)

inf
f∈B(f ?,ε)

∆(f , fλ)

Part II: sup
f∈B(f ?,ε)

inf
fλ∈FD

ε (λ)
∆(f , fλ)

Part III: diam(FDε (λ))
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Distance of FD
ε to B(f ?, ε)

Evolution of Rashomon Set Values in function of λ
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Distance of FD
ε to B(f ?, ε)

Evolution of Rashomon Set Values in function of λ
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Distance of FD
ε to B(f ?, ε)

Evolution of Rashomon Set Values in function of λ
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Distance of FD
ε to B(f ?, ε)

Difficulties for limits:

• First, the set FDε (λ) might continue to grow when λ→ 0+. Thus,
considering it at a given time step λ doesn’t take into account the fact
that it can still increase afterwards.

• Secondly, we need a uniform parameter λ0 associated with the removal of
an hypothesis of the class and not a per hypothesis version.
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Distance of FD
ε to B(f ?, ε)

No uniform convergence ?:

Lemma
There exists F and D such

∀λ > 0, sup
fλ∈FD

ε (λ)

inf
f∈B(f ?,ε)

∆(f , fλ) > ε (1)
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Distance of FD
ε to B(f ?, ε)

Upper bound:

Lemma
For a given distribution D, we have:

∀λ > 0, sup
fλ∈FS

ε (λ)

inf
f∈B(f ?,ε)

∆(f , fλ) ≤ min(1, ε+ c?(λ)− Γ) ≤ min(1, ε+ c?(λ))

where Γ ≥ 0 is the minimal gradient of an affine function tangent to
λ0 7→ c?(λ0) and going through c?(λ) + ε. Moreover, there exists for all λ > 0,
a distribution D, an ε > 0 and an hypothesis space F where the equality is
reached (for a fixed lambda !).
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Distance of FD
ε to B(f ?, ε)

A strong result:

Theorem
If {errD(f ) | f ∈ F} is finite, then there exists λ0 > 0 such that:

∀λ ≤ λ0, sup
fλ∈FS

ε (λ)

inf
f∈B(f ?,ε)

∆(f , fλ) = 0
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Distance of B(f ?, ε) to FD
ε

Evolution of Rashomon Set Values in function of λ
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Distance of B(f ?, ε) to FD
ε

A needed distinction between interior and boundary:

Lemma
There exists F and D such

∀λ > 0, sup
f∈B(f ?,ε)

inf
fλ∈FD

ε (λ)
∆(f , fλ) > ε (2)
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Distance of B(f ?, ε) to FD
ε

Strong results on convergence:

Theorem
If F has finite VC dimension, then:

sup
f∈B(f ?,ε)o

inf
fλ∈FD

ε (λ)
∆(f , fλ) →

λ→0+
0
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Distance of B(f ?, ε) to FD
ε

Some other properties under mild assumptions:

Lemma
If there exists η > 0 such that ∀f ∈ B(f ?, ε)o, errD(f ) ≤ (1− η)ε and φ is
bounded on B(f ?, ε)o, then there exists λ0 such that:

∀λ ≤ λ0, sup
f∈B(f ?,ε)o

inf
fλ∈FS

ε (λ)
∆(f , fλ) = 0

29



Distance of B(f ?, ε) to FD
ε

The empirical case:

Lemma
If F has a finite number of patterns on D, then, there exists λ0 > 0 such that:

∀λ ≤ λ0, sup
f∈B(f ?,ε)o

inf
fλ∈FS

ε (λ)
∆(f , fλ) = 0
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General convergence of diameter

An approximation result:

Theorem
For all ε > 0, there exists λ0 > 0 such that:

∀λ ≤ λ0, d(FDε (λ),B(f ?, ε)) ≤ 2ε

Thus, we have in particular:

∀λ ≤ λ0, diam(B(f ?, ε))− 2ε ≤ diam(FDε (λ)) ≤ diam(B(f ?, ε)) + 2ε
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General convergence of diameter

A positive answer:

Corollary
For any D, there exists λ0 > 0 such that:

∀λ ≤ λ0, diam(FDε (λ)) ≤ 6ε
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General convergence of diameter

A positive answer - II:

Theorem
Under Tsybakov’s low-noise assumption [Hanneke, 2011], there exists λ0 > 0
such that, for all ε > 0 and ε̃ arbitrarily close to 0:

∀λ ≤ λ0, diam(FDε (λ)) ≤ 2ε+ µε1/κ + ε̃
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General convergence of diameter

A stronger result:

Theorem
If there is a finite number of patterns of F on D, for all except a finite number
of ε > 0, there exists λ0 > 0 such that:

∀λ ≤ λ0, d(FDε (λ),B(f ?, ε)) = 0

From this, we can deduce in particular that:

∀λ ≤ λ0, diam(FDε (λ)) = diam(B(f ?, ε))
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General convergence of diameter

A final result:

Theorem
For any ε, δ > 0, there exists N(ε, δ) and λ0(ε) such that for all set S for size
at least N(ε, δ), with probability 1− δ:

∀λ ≤ λ0, diamD(FSε (λ)) ≤ diamD(FD2ε(λ)) ≤ 12ε
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Robustness, Complexity and Learning- A summary

Global Summary of results
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Active Learning and Polarization

Towards a dynamic reduction of disagreement:

• Key idea of [Haghtalab et al., 2019]: Introduce a bias toward an
hypothesis f in FDε

• With a distance α allowed between D and D̃, guarantees of the form:

diamD
(
F D̃ε
)
∈ O

(
ε

α errD(f )

)
where D̃ := (1− α)D + αP and:

P := D |
{
x | f̃ (x) = f ∗(x)

}
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Active Learning and Polarization

An active learning idea:

• Subset of hypothesis coherent the labeling of x as y :

V y
x (H) := {f ∈ F : f (x) = y , h ∈ H}

• Suppose a distribution ρ on F (uniform for instance), or a way of sampling
hypothesis.
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Active Learning and Polarization

An active learning idea:

• Construct E , subset of maximal empirical empirical error with ε-minimal
empirical cost (with sampling guarantees)

• Enforce the modified distribution to say realizable while introducing the
bias by picking points (x?, y?) verifying:

max
(x,y)∈S

ρ(V y
x (E))

• Add (x?, y?) with mass αkPD̂(x?, y?), where D̂ is a non-parametric
estimation of D, and αk reflect the confidence we have in our estimate.
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Some interesting next steps

• Towards action taking context: [Foster et al., 2020]

• Coexistence of different agents: Polarization under the existence of
different type of agents (e.g. F1 vs F2)
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Conclusion

• Thanks for the course !

• Any questions ?
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